Protein-Protein Interaction Prediction using PCA and SVR-PHCS
نویسندگان
چکیده
منابع مشابه
Prediction of Protein Sub-Mitochondria Locations Using Protein Interaction Networks
Background: Prediction of the protein localization is among the most important issues in the bioinformatics that is used for the prediction of the proteins in the cells and organelles such as mitochondria. In this study, several machine learning algorithms are applied for the prediction of the intracellular protein locations. These algorithms use the features extracted from pro...
متن کاملPrediction of Protein Function Using Protein-Protein Interaction Data
Assigning functions to novel proteins is one of the most important problems in the postgenomic era. Several approaches have been applied to this problem, including the analysis of gene expression patterns, phylogenetic profiles, protein fusions, and protein-protein interactions. In this paper, we develop a novel approach that employs the theory of Markov random fields to infer a protein's funct...
متن کاملProtein Function Prediction Using Protein–Protein Interaction Networks
Proteins perform biological functions by participating in a large number of interactions, ranging from transient interactions in signaling pathways to permanent interactions within stable complexes. Studies have shown that the immediate interaction neighborhood of a protein can be used to infer its functions. While using only such direct interactions limits prediction coverage, extending the in...
متن کاملProtein Interaction Networks: Protein Domain Interaction and Protein Function Prediction
Most of a cell’s functional processes involve interactions among proteins, and a key challenge in proteomics is to better understand these complex interaction graphs at a systems level. Because of their importance in development and disease, protein-protein interactions (PPIs) have been the subject of intense research in recent years. In addition, a greater understanding of PPIs can be achieved...
متن کاملMaster Thesis PCA - Fuzzy - SVR Stock Price Prediction
This study provides a principal component analysis-fuzzy-support vector regression model for stock price prediction. Stocks with similar historical trends are selected using principal component analysis. Fuzzy information granulation is performed to construct a probability density for stock prices. Support vector regression is implemented to generate a regression function for future price predi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Open Bioinformatics Journal
سال: 2015
ISSN: 1875-0362
DOI: 10.2174/1875036201509010001