Protein-Protein Interaction Prediction using PCA and SVR-PHCS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Protein Sub-Mitochondria Locations Using Protein Interaction Networks

Background: Prediction of the protein localization is among the most important issues in the bioinformatics that is used for the prediction of the proteins in the cells and organelles such as mitochondria. In this study, several machine learning algorithms are applied for the prediction of the intracellular protein locations. These algorithms use the features extracted from pro...

متن کامل

Prediction of Protein Function Using Protein-Protein Interaction Data

Assigning functions to novel proteins is one of the most important problems in the postgenomic era. Several approaches have been applied to this problem, including the analysis of gene expression patterns, phylogenetic profiles, protein fusions, and protein-protein interactions. In this paper, we develop a novel approach that employs the theory of Markov random fields to infer a protein's funct...

متن کامل

Protein Function Prediction Using Protein–Protein Interaction Networks

Proteins perform biological functions by participating in a large number of interactions, ranging from transient interactions in signaling pathways to permanent interactions within stable complexes. Studies have shown that the immediate interaction neighborhood of a protein can be used to infer its functions. While using only such direct interactions limits prediction coverage, extending the in...

متن کامل

Protein Interaction Networks: Protein Domain Interaction and Protein Function Prediction

Most of a cell’s functional processes involve interactions among proteins, and a key challenge in proteomics is to better understand these complex interaction graphs at a systems level. Because of their importance in development and disease, protein-protein interactions (PPIs) have been the subject of intense research in recent years. In addition, a greater understanding of PPIs can be achieved...

متن کامل

Master Thesis PCA - Fuzzy - SVR Stock Price Prediction

This study provides a principal component analysis-fuzzy-support vector regression model for stock price prediction. Stocks with similar historical trends are selected using principal component analysis. Fuzzy information granulation is performed to construct a probability density for stock prices. Support vector regression is implemented to generate a regression function for future price predi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Open Bioinformatics Journal

سال: 2015

ISSN: 1875-0362

DOI: 10.2174/1875036201509010001